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Skin microbiome differentiates into distinct 
cutotypes with unique metabolic functions 
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Abstract 

Background  The effects of air pollutants, particularly polycyclic aromatic hydrocarbons (PAHs), on the skin microbi-
ome remain poorly understood. Thus, to better understand the interplay between air pollutants, microbiomes, and 
skin conditions, we applied metagenomics and metabolomics to analyze the effects of PAHs in air pollution on the 
skin microbiomes of over 120 subjects residing in two cities in China with different levels of air pollution.

Results  The skin microbiomes differentiated into two cutotypes (termed 1 and 2) with distinct taxonomic, functional, 
resistome, and metabolite compositions as well as skin phenotypes that transcended geography and host factors. 
High PAH exposure was linked to dry skin and cutotype 2, which was enriched with species with potential biodegra-
dation functions and had reduced correlation network structure integrity. The positive correlations identified between 
dominant taxa, key functional genes, and metabolites in the arginine biosynthesis pathway in cutotype 1 suggest 
that arginine from bacteria contributes to the synthesis of filaggrin-derived natural moisturizing factors (NMFs), which 
provide hydration for the skin, and could explain the normal skin phenotype observed. In contrast, no correlation with 
the arginine biosynthesis pathway was observed in cutotype 2, which indicates the limited hydration functions of 
NMFs and explains the observed dry skin phenotype. In addition to dryness, skin associated with cutotype 2 appeared 
prone to other adverse conditions such as inflammation.
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Conclusions  This study revealed the roles of PAHs in driving skin microbiome differentiation into cutotypes that vary 
extensively in taxonomy and metabolic functions and may subsequently lead to variations in skin–microbe interac-
tions that affect host skin health. An improved understanding of the roles of microbiomes on skin exposed to air pol-
lutants can aid the development of strategies that harness microbes to prevent undesirable skin conditions.

Introduction
The human skin hosts a diverse community of microbes 
(i.e., microbiome) on the stratum corneum layer of the 
epidermis. The microbiome is indispensable for the modu-
lation of host immunity, protection against opportunistic 
pathogens, and maintenance of skin physiology [1]. More 
importantly, skin conditions such as acne [2, 3] and atopic 
dermatitis [4, 5] have microbial contributions as part of 
their etiology, and skin microbiome dysbiosis may partly 
explain the onset of these conditions. Given the intercon-
nectedness between the skin microbiome and host skin 
health, examining how host physiological and environ-
mental factors shape the skin microbiome may allow the 
metabolic functions of microbes to be harnessed to pro-
tect hosts against various skin conditions. The understand-
ing of the skin microbiome has increased in recent years 
owing to metagenomics sequencing [6–8] and mass-spec-
trometry-based profiling of microbial metabolites [9–11].

Studies have identified distinguishable microbial sub-
community clusters termed cutotypes [12] (or cuta-
neotypes [13]) in host skin, which differ in microbial 
diversity, composition, functional, and antimicrobial 
resistance profiles. The distribution of cutotypes may 
vary with skin characteristics of individual hosts and thus 
help explain how alterations in skin microbial taxonomic 
composition can lead to the onset of skin conditions 
across different demographic groups. However, little 
information is currently available on factors that explain 
the differentiation of cutotypes and how this relates to 
skin health. Such knowledge would undoubtedly aid the 
identification of cutotype markers associated with unde-
sirable skin conditions, thereby assisting the development 
of personalized solutions for improving skin health.

Chronic exposure to air pollutants is a serious con-
cern for individuals living in urban environments. Many 
pollutants occur in the atmosphere, of which polycyclic 
aromatic hydrocarbons (PAHs) are among the most haz-
ardous class of organic molecules to human health [14]. 
Earlier reports on the impacts of air pollution on skin have 
pointed toward an association with premature skin aging 
[15–18]. Specifically, cutaneous exposure to PAHs has 
been linked to changes in the physiological properties of 
the skin, potentially leading to pigmented spots [11] and 
cancer [19]. While specific members of the skin microbi-
ome have been shown to metabolize PAHs [20, 21], the 
roles of PAH exposure in shaping the skin microbiome 
warrant further investigation. In our previous study [22], 

we demonstrated a dose–response relationship between 
the levels of exposure to various PAHs and changes in the 
taxonomic compositions of skin microbiomes, as well as 
variations in the abundances of microbial functional genes 
crucial for host–microbe interactions, virulence, and host 
immune modulation. However, these findings were largely 
based on amplicon sequencing of the phylogenetic marker 
genes of bacteria and fungi, while functional profiling by 
metagenomics sequencing was performed for only a small 
subset of samples with no corresponding metabolite char-
acterization. More importantly, studies have yet to answer 
whether and how PAH exposure drives skin microbiome 
differentiation, what is the relationship between PAH 
exposure and cutotype differentiation, and whether any 
changes in cutotypes associated with PAH exposure can 
also result in changes in the function and metabolites of 
the microbiome as well as the skin–microbe interactions 
that may be detrimental to host skin health.

To address these questions, we performed a large-scale 
study of the facial cheek microbiomes of 124 Chinese 
females from two cities with different PAH exposure lev-
els. The concurrent assessment of the metagenomes and 
metabolites allowed comprehensive characterization of the 
dynamic interplays between PAH exposure, skin microbi-
omes, and their functional potentials and metabolites. We 
report, for the first time, a link between PAH exposure 
from air pollution and the differentiation of the skin micro-
biome into cutotypes with distinct taxonomic, functional, 
resistome (i.e., the repertoire of antibiotic resistance genes), 
and metabolite compositions as well as skin phenotypes.

Results
Differentiation of skin microbiomes into distinct cutotypes 
was associated with PAH exposure
We detected 1525 species-level taxa at an average relative 
abundance of > 0.00001% of all the skin microbiomes, with 
42 of these taxa considered core (i.e., present across all 
samples) as they comprised an average of nearly 80% of the 
reads per sample (Supplementary Fig.  1a). The microbial 
diversity was higher in subjects from the more polluted 
city of Baoding (Supplementary Fig.  1b). Fungal reads 
composed an average of 2.2% (95% confidence interval 
0–8.7%) of all the skin microbiomes, most of which were 
classified as Malassezia restricta and Malassezia globosa 
(Supplementary Fig. 1c-d). Viral and archaeal reads cumu-
latively composed an average of 0.05% (95% confidence 
interval 0–0.36%) of the microbiome across each sample.
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Prediction strength analysis estimated the presence of 
two distinct clusters among the samples. These two dis-
tinct community clusters, which explained 32.3% of the 
total community variation (Supplementary Table 1), were 
also detected with the Bray–Curtis dissimilarity (Fig. 1a). 
The microbiome of one cluster (hereafter, cutotype 1), 
which had a relatively lower Shannon diversity, was 
enriched with Cutibacterium acnes and its taxonomic 
relative Cutibacterium granulosum (Fig.  1a–c). Alterna-
tively, the second cluster (hereafter, cutotype 2) had a rel-
atively higher microbial diversity with > 100 species-level 
taxa (e.g., Xanthomonas citri and Rhodococcus opacus), 
including common skin colonizers such as Staphylococ-
cus aureus and Corynebacterium species (Fig. 1a–c).

Cutotype 2 was enriched with a diverse array of genera 
(e.g., Paracoccus, Archromobacter, Caulobacter, Pseu-
domonas, Rhodococcus, and Sphingomonas) known to 
have biodegradation capabilities (Supplementary Table 2) 
and some of them were found in PAH-degrading micro-
bial communities [23, 24]. We thus hypothesized that the 
differentiation of the microbiome into cutotype 2 was 
associated with PAH exposure. Indeed, distance-based 
redundancy analysis revealed that exposure to many dif-
ferent PAHs appeared to drive the microbiome toward 
cutotype 2 (Fig. 1d). Exposure to a small number of lower-
molecular-weight PAHs (i.e., < 200  g/mol) was associated 
with the differentiation of all cutotype 1 microbiomes and 
a small subset of cutotype 2 microbiomes, whereas expo-
sure to a large number of higher-molecular-weight PAHs 
(i.e., > 200  g/mol) was associated with the differentiation 
of most cutotype 2 microbiomes. The exposure levels to 
many PAHs were also correlated with the first dimension 
of the community compositional principal coordinate axis 
(i.e., PCoA1 in Fig. 1a) (Fig. 1e), suggesting that PAH expo-
sure and community composition are partially linked.

Cutotype was not related to age group and only margin-
ally associated with city (Fig. 1f, Supplementary Fig. 1e and 
Supplementary Table  1). Subjects with dry skin (sebum 
level < 70  μg/cm2) were prone to having a microbiome 
resembling cutotype 2, while those with normal to high 
sebum levels (> 70 µg/cm2) were prone to having a micro-
biome resembling cutotype 1 (Fig.  1f, chi-square with 

Yates correction = 14.4, p = 0.00015), which was consist-
ent with the high abundance of Cutibacterium. Although 
not statistically significant, subjects with higher pigmenta-
tion frequency were more prone to having a microbiome 
resembling cutotype 2 (Fig.  1f). Regarding fungal taxa, 
community differences could neither be explained by cuto-
types nor other host factors, and shifts along PCoA1 based 
on the Bray–Curtis dissimilarity were only associated with 
exposure to nicotine (Spearman’s ρ = 0.308, p = 0.018) and 
cotinine (Spearman’s ρ = 0.251, p = 0.045).

Species‑specific correlations between growth rate and PAH 
exposure
Growth rate inference [6, 7] was performed to assess how 
cutotypes and PAH exposure may influence microbial phys-
iology. Our findings suggested that taxa in the genera of 
Micrococcus and Corynebacterium were among those with 
the highest inferred growth rate and it was similar between 
the two cutotypes (Fig.  2a). Taxa within Enhydrobacter, a 
genus phylogenetically related to Moraxella and hypoth-
esized to be enriched on Asian skin [12, 25, 26], were also 
inferred to have a high growth rate. The levels of exposure 
to dibenzo[a,h]anthracene and acenaphthene were associ-
ated with changes in the inferred growth rates of two bacte-
rial species (i.e., a bacterium affiliated with Micrococcaceae 
and Janibacter indicus) (Supplementary Table 2). City, acne 
onset, and pigmentation frequency were not associated 
with changes in the inferred growth rates of any bacte-
rial taxa. Similarly, single-nucleotide polymorphism-based 
subspecies-level growth rate estimation [9] did not indicate 
cutotype-based growth pattern differences between the 
clusters of related taxa within C. acnes (Fig. 2b) and Micro-
coccus luteus (Fig. 2c). Inferred growth rates of C. acnes and 
M. luteus subspecies taxa on the skin were comparable to 
those reported in previous studies [6, 7, 27]. Overall, pollu-
tion exposure did not appear to influence inferred growth 
rates across the microbiome.

PAH‑associated cutotypes were enriched in diverse 
potential functions
The functional profile was examined to understand how 
compositional differences between cutotypes translated 

(See figure on next page.)
Fig. 1  Cheek microbiomes were differentiated into cutotypes and associated with PAH exposure. a Principal coordinate analysis (PCoA) plot based 
on the Bray–Curtis dissimilarity of microbial community composition. Data points represent metagenomic samples with point size representing 
Shannon diversity and color showing the cutotype as determined by the prediction strength analysis. The inset panel shows the pairwise Bray–
Curtis dissimilarity between samples of the same or different cutotypes, showing that microbiomes within a cutotype were more similar than 
between cutotypes (**Tukey’s pairwise post-hoc p < 0.05 for all pairwise comparisons). b PCoA plot as shown in panel a with the data points 
colored according to the relative abundance of Cutibacterium acnes, Xanthomonas citri, and Rhodococcus opacus in cutotypes 1 and 2. c Top 12 
species-level bacterial taxa based on the average relative abundance in all the samples organized by cutotype. Other bacterial taxa were grouped 
into the “Minor/Unclassified” category. d Distance-based redundancy analysis depicting the effects of exposure to high and low molecular weight 
PAHs (purple and green, respectively) on cutotype differentiation. PAHs with a molecular weight < 200 g/mol were considered low. e Spearman’s 
correlation between the first component of the PCoA and the measured concentrations of the six PAHs. Linear regression lines and R2 values are 
shown. f Association of samples in the respective cutotypes with different host factors and host skin phenotype
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Fig. 1  (See legend on previous page.)
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to variations in functional potentials. The congruence 
between taxonomy and functional pathways in the skin 
microbiomes in cutotypes 1 and 2 (Fig. 3a) suggested that 
samples with similar taxonomic compositions also tended 
to have similar functions. As in taxonomy, cutotype was 
the strongest factor in explaining functional differences 
between microbiomes, as compared to other parameters 
such as clinical or city factors (Supplementary Table 1).

The core set of UniRef90 pathways (i.e., ≥ 75% of sam-
ples in each cutotype) was assessed by contributional 
diversity analysis to further compare the pathway diver-
sity between cutotypes. For both cutotypes, the core was 
dominated by pathways involved in the biosynthesis and 
metabolism of nucleotides and amino acids (Supple-
mentary Table  3). Despite this conservation, core path-
ways for cutotype 1 mainly exhibited low within- and 
between-sample diversity (i.e., “simple and conserved” 
contributional diversity [28]) (Fig.  3b). In contrast, core 
pathways in cutotype 2 were dominated by those with 
high between sample diversity (i.e., “simple and variable” 

and “complex and variable” contributional diversity [28]) 
(Fig.  3b). The discrepancy between the two cutotypes 
regarding within and between sample variations was 
most likely due to the dominant contribution of C. acnes 
in cutotype 1 to the shared core pathways (e.g., folate 
transformation and valine biosynthesis) (Fig. 3c).

Multivariate analysis was performed to detect the 
enrichment of KEGG Orthology (KO) gene families 
between cutotypes, which revealed the enrichment of 556 
KOs (Supplementary Table  2) and 53 UniRef pathways 
spanning multiple facets of microbial physiology (Fig. 3d) 
in cutotype 2 versus cutotype 1. At the pathway level, 
cutotype 1 was characterized by amino acid degradation 
potential (PWY_5028: L-histidine degradation III), while 
cutotype 2 was associated with multiple amino acid bio-
synthesis pathways (n = 8), including tryptophane (TRP-
SYN_PWY: L-tryptophan biosynthesis) and methionine 
biosynthesis (n = 4). Cutotype 2 was also characterized 
by an increased number of pathways related to carbo-
hydrate biosynthesis (n = 6) and the tricarboxylic acid 

Fig. 2  Growth rate inference of the cheek microbiome at the species and subspecies levels. a Heatmap of the species level inferred growth rates for 
taxa across samples grouped by cutotype. b, c Heatmaps of the inferred growth rates for subspecies taxa belonging to b Cutibacterium acnes and c 
Micrococcus luteus 
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(TCA) cycle (n = 7), suggesting a shift in the microbial 
metabolism.

Given that high PAH exposure was linked to micro-
biome differentiation into cutotype 2 concomitant with 
the enrichment of pathways related to diverse func-
tions, we hypothesized that this cutotype presented an 
increased ability to degrade xenobiotic compounds. To 
test this hypothesis, KOs associated with xenobiotic 
compound degradation were compared between the 
two cutotypes. The Mann–Whitney test results showed 
an increased abundance of KOs involved in the degra-
dation of benzoate (FDR-adjusted p = 6.6 × 10–16), chlo-
roalkane/alkene (FDR-adjusted p = 7.2 × 10–16), PAH 
(FDR-adjusted p = 6.9 × 10–5), steroids (FDR-adjusted 
p = 9.9 × 10–5), styrene (FDR-adjusted p < 7.8 × 10–10), 
and toluene (FDR-adjusted p < 5.7 × 10–14) in cutotype 
2 (Fig.  3e). Conversely, abundances of KOs linked to 
nitrotoluene degradation were increased in cutotype 
1 (FDR-adjusted p = 3.78 × 10–5). Overall, these results 
suggested that while each cutotype was characterized 
by distinct microbes that contributed to shared core 

functions, they also presented differential enrichment 
of metabolic functions that conferred adaptive and bio-
degradative advantages given certain environmental 
conditions.

Cutotypes also had different resistomes, which may 
explain cutotype-specific responses to host antimicro-
bial treatment. The most abundant gene family markers 
were those conferring resistance to fluoroquinolones, 
aminoglycosides, and beta-lactams (Supplementary 
Table  4). Cutotype explained nearly 18% of resistome 
variation (Supplementary Table  1), with point muta-
tions in gyrA (ARO: 3,003,974) conferring resistance 
to fluoroquinolone and an efflux protein (tet(V)) con-
ferring resistance to tetracycline (ARO: 3,000,181) 
enriched in cutotype 2. Exposure to PAHs also posi-
tively correlated with the abundance of a small number 
of antibiotic resistance gene families (Supplementary 
Table  2), including those encoding for a tetracycline 
efflux pump (tet(33)) and several plasmid- or integron-
encoded gene families related to aminoglycoside resist-
ance. Thus, these results suggest that chronic exposure 

Fig. 3  Cutotypes differed in contributional functional diversity and enriched functional pathways. a Procrustes analysis showing congruence 
between the taxonomic and functional compositions of the microbiome. The statistically significant Pearson correlation indicates that microbiomes 
were similar in both taxonomic composition and functions. b Contribution diversity differences between cutotypes of core gene UniRef90 
pathways (those present in ≥ 75% of the samples within each cutotype). Core pathways detected in both cutotypes are considered to be “shared” 
(triangles). c Examples of core pathways (folate transformation II and L-valine biosynthesis) show differences in contributional diversity between 
cutotypes. Relative abundance is expressed in reads per kilobase per million reads (RPKM). d Enrichment of UniRef90 pathways between cutotypes 
according to MaAslin2. Only statistically significant (adjusted p < 0.05) pathways are shown. e Relative abundance in RPKM of KOs involved in 
xenobiotic degradation across samples in the respective cutotypes
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to PAH may favor the presence of species with antimi-
crobial resistance genes.

Skin metabolites were specific to cutotypes and correlated 
with the microbiome and PAHs
In our earlier report using 16S rRNA gene amplicon 
sequencing data [11], we showed that the skin metabo-
lome accounted for one third of the variability in bacterial 
diversity. Here, we further investigated the links between 
metabolome and metagenomic data. The metabolomic 
profiles of subjects [11] were examined with the corre-
sponding metagenomes to test whether the molecules on 
skin were specific to cutotypes. Many gamma-glutamyl 
amino acids, xenobiotics, and unknown metabolites were 
overrepresented in cutotype 2 (Supplementary Fig.  2). 
In contrast, many diverse lipid molecules, largely repre-
sented by the sebum components myristic and palmit-
oleic acid [29], were overrepresented in cutotype 1.

Correlation network analysis was performed by inte-
grating metabolomic data with corresponding taxonomic, 
functional, metabolomic, and PAH features for each cuto-
type to (i) provide a comprehensive and multifaceted view 
of the potential ecological relationships between pollutant 
exposure and microbial and metabolic features and (ii) 
compare the relationships between microbiome compo-
nents of the two cutotypes. While networks of the cuto-
types presented similar numbers of features (i.e., nodes), 
the network of cutotype 1 was more integrated with a 
higher number of edges and average number of neighbors 
per node (Supplementary Table 5). The network density of 
cutotype 1 also exceeded that of cutotype 2, which sug-
gested a more stable network in the former.

To observe the overall correlations between the micro-
biome features of the two cutotypes, their networks were 
merged, which produced 2684 nodes and 52,727 correla-
tions (Supplementary Table  5). Significant correlations 
involving metabolites previously [11] shown to be associ-
ated with undesirable skin phenotypes (e.g., N-acetyl and 
G-glutamyl amino acids, urea cycle intermediates, amino 
acids of tryptophan metabolism, fatty acids and carnitine 
lipids, lactate, and TCA cycle metabolites) were observed 
(Fig.  4). N-acetylglutamine, a metabolite of arginine bio-
synthesis, was central to the network and had significant 
positive correlations with multiple Corynebacterium species 
(n = 43) and KOs (n = 30) (e.g., K01607 that encodes 4-car-
boxymuconolactone decarboxylase, an enzyme involved 
in benzoate degradation) in cutotype 2 (Supplementary 
Table 5 and Fig. 4). N-acetylglutamine was also correlated 
with the fpr gene (K00528), which encodes an oxidoreduc-
tase, as well as KOs of the TCA cycle, carbohydrate metabo-
lism, and biofilm formation (Supplementary Table 5). These 
functions are representative of the bacterial degradation 
strategy for aromatic compounds, in which compounds are 

de-aromatized and then funneled into central carbon path-
ways such as the TCA cycle [23]. The strong positive cor-
relations with Corynebacterium species suggested that the 
cluster may contribute to PAH biodegradation. Other spe-
cies capable of biodegradation, including Pseudomonas and 
Rhodococcus, were also positively correlated with N-acetyl-
glutamine (Supplementary Table  5). For cutotype 1, two 
clusters were observed. One cluster featured species, includ-
ing C. acnes, and KOs that were positively correlated with 
N-delta-acetylornithine, which is another arginine pathway 
metabolite. The second cluster showed positive correla-
tions with 2-oxoarginine and many KOs (n = 56) encoding 
base and mismatch repair and related functions (K03469, 
K01246, K03601, and K01971). 2-Oxoarginine was also 
positively correlated with glutaryl-CoA dehydrogenase 
(K00252) for benzoate degradation and glutamate dehydro-
genase (K00262) for arginine biosynthesis (Fig. 4).

Kynurenate, a tryptophan pathway metabolite, which 
may stimulate the onset of inflammatory responses in 
hosts [31], showed positive correlations with the oral 
bacterium Streptococcus sobrinus in cutotype 2. Interest-
ingly, the presence of oral bacteria on the skin has been 
attributed to skin aging [32]. An unknown metabolite, 
X-13737, previously shown to be enriched in subjects 
from the more polluted city of Baoding [11], showed a 
positive correlation in cutotype 2 with a taxon affiliated 
with Pseudomonas, which has been postulated to com-
pete with resident skin Cutibacterium [33].

Discussion
The skin microbiome is shaped by the external environ-
ment surrounding the skin [34], and subsequently, expo-
sure to pollutants such as PAHs has been linked to a 
wide range of skin conditions [14, 19, 35, 36]. Recently, 
the roles of the skin microbiome in modulating host 
responses to environmental stressors have gained rec-
ognition [37]. By analyzing 32 metagenomic samples 
from cheeks and scalps, we previously associated PAH 
exposure with changes in the compositional and func-
tional capabilities of the skin microbiome, with potential 
consequences for skin phenotype [22]. In this study, by 
analyzing the metagenomes and corresponding metabo-
lites from the cheeks of over 120 subjects, we provided 
evidence that PAH exposure could play a role in the dif-
ferentiation of skin microbiomes into cutotypes that 
have distinct compositions and metabolic functions at 
the community and genomic levels and are associated 
with different skin phenotypes. The link between PAH 
exposure and cutotype differences may help explain the 
potential roles of the microbiome in modulating host 
skin health upon air pollutant exposure.

The presence of cutotypes on the skin of subjects 
in this study was consistent with the stratification of 
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microbiomes on other human body parts, which has 
been linked to changes in host phenotypes, physiology, 
and susceptibility to diseases [38–40]. A recent study of 
nearly 300 Chinese individuals also reported that skin 
microbiomes can be grouped into two cutotypes [12], 
with the differentiation mainly driven by nutrient avail-
ability as well as host physiology and chronological age 
[8]. Our study showed that cutotype differentiation may 
also occur as a function of environmental exposure to air 
pollution. The bacterial taxa previously documented to 
have biodegradation capabilities (e.g., Archromobacter, 
Caulobacter, Paracoccus, Pseudomonas, Rhodococcus, and 
Sphingomonas) [23, 24] were enriched in cutotype 2, and 
a positive correlation was detected between acenaphthene 
exposure level and the inferred growth rate of a species in 
Janibacter, a genus capable of using multiple PAH types 
as carbon sources [41]. These observations together with 
the documented PAH metabolic capabilities of common 

skin colonizers [20, 21] suggest that PAHs are actively 
metabolized by the skin microbiome. The species with 
biodegradation abilities may have been originated from 
the environment [24, 42] and managed to transiently 
colonize on skin due to the presence of PAHs. However, 
PAHs do not appear to greatly influence fungal commu-
nity composition. The cutotypes also showed significant 
resistome differences, which was consistent with previ-
ous cutotype analyses [12]. The roles of PAH exposure in 
driving resistome variations via cutotype differentiation 
remain to be elucidated.

Multivariate analysis of metagenomics, metabolomics, 
and PAH exposure data revealed complex associations 
between pollutant exposure and various aspects of the 
skin microbiome. The correlation network of cutotype 
2 was strongly associated with exposure to multiple 
PAHs and had a reduced integrity, which has been pre-
viously associated with acne and dandruff on the cheeks 

Fig. 4  Cutotype-specific correlations between compositional, functional, metabolomic features, and PAH exposure. Each node represents a feature 
and is colored by feature type and sized by node degree. Blue and orange edges represent those in cutotypes 1 and 2, respectively. Solid and 
dashed edges represent positive and negative correlations, respectively, with line thickness representing the absolute value of the Spearman’s 
correlation. Only metabolites considered enriched in the polluted city of Baoding [11] are shown to enhance visual clarity. Nodes connected to 
N-acetylglutamine are circled to highlight a cluster of Corynebacterium taxa. The species-level taxonomy of these Corynebacterium nodes, as well 
as all other significant correlations, can be found in Supplementary Table 5. The multivariate analysis was performed using HallA. Correlations with 
corrected q value ≤ 0.25 are statistically significant [30], and only those with a Spearman’s correlation >|0.25| were included in analysis



Page 9 of 14Leung et al. Microbiome          (2023) 11:124 	

and scalp [22, 43]. However, whether microbiome net-
work stability can be used as a diagnostic marker to 
test for susceptibility to pollutant-related skin condi-
tions requires further investigation. Each PAH appeared 
to have unique and cutotype-specific associations with 
microbial features. Metabolites previously detected at 
higher levels in the more polluted city [11] showed cuto-
type-specific associations with functional genes involved 
in DNA repair, secretion systems, and pollutant degrada-
tion. While we cannot determine whether the detected 
metabolites on the skin originated from microbial metab-
olism, environmental exposure, or anthropogenic factors 
[10], the presence of shared but opposing correlations 
between cutotypes suggest that specific microbes interact 
differently with chemicals on the skin.

The two identified cutotypes were associated with dis-
tinct skin dryness and microbial metabolism in which the 
arginine pathway appeared to play a pivotal role (Fig. 5). 
Cutotype 1, which was mostly associated with normal to 
greasy skin, was dominated by C. acnes (consistent with 
previous reports on sebaceous sites [8]) and functions 
related to lipid metabolism and amino acid biosynthe-
sis. C. acnes, among other taxa, was positively correlated 
with N-delta-acetylornithine as well as many KOs (i.e., 
K00619 [argA], K00930 [argB], K00145 [argC], K00611 
[argF], K01755 [argH], and K00620 [argJ]) in the argi-
nine biosynthesis pathway, suggesting that arginine is 

produced in cutotype 1. Arginine is a key amino acid in 
filaggrin-derived natural moisturizing factors (NMFs), 
which provide hydration for the skin [44]. We thus 
speculate that arginine from bacteria contributes to skin 
hydration (Fig.  5). High-throughput mass spectrom-
etry proteomic analysis of the cheek stratum corneum 
of a subset of subjects (34 from cutotype 1 and 19 from 
cutotype 2) revealed that the expression level of the FLG 
gene-encoded filaggrin [45] was similar between the two 
cutotypes (data not shown), suggesting that skin dryness 
does not appear to be linked to the FLG gene.

In contrast, cutotype 2 was associated with dry skin 
and hyperpigmentation in subjects aged under 45. 
Diverse species, including Paracoccus [46], Sphingo-
monas [23], and Pseudomonas [20], that can reportedly 
degrade PAHs were found in cutotype 2. In particu-
lar, members of Corynebacterium were the key taxa in 
cutotype 2. These taxa were positively correlated with 
benzoate degradation and KOs in the TCA cycle (i.e., 
K01607 and K00262 [gdhA]). Growth in the presence 
of aromatic compounds has been shown to upregulate 
enzymes in the TCA cycle of Corynebacterium glu-
tamicum (e.g., a fivefold increase in GdhA that leads 
to L-glutamate production) [47], which we speculate is 
similar to that in the microbiome of skin exposed to 
PAHs. Consistent with the potential increase in L-glu-
tamate, the metabolite N-acetylglutamine, produced 

Fig. 5  Schematic illustration of the potential influence of the arginine biosynthesis pathway in cutotypes 1 and 2 on natural moisturizing factors 
(NMFs) for skin hydration. Arginine biosynthesis played an important role in cutotype 1, but only a limited role in cutotype 2. The illustration was 
drawn based on the key correlations found between the dominant taxa, metabolic functions, and metabolites in the respective cutotypes. The KOs 
and metabolites highlighted by a rectangular box are those identified as having significant positive correlations in the network analysis



Page 10 of 14Leung et al. Microbiome          (2023) 11:124 

from L-glutamate, was positively correlated with 
Corynebacterium taxa (Fig. 5). In contrast to cutotype 
1, Corynebacterium taxa in cutotype 2 were not corre-
lated with any KOs or metabolites in the arginine bio-
synthesis pathway, and positive correlations with KOs 
in the arginine biosynthesis pathway were only found 
in taxa with low relative abundances. Thus, arginine 
synthesis by the microbiome may be limited in cuto-
type 2 compared with cutotype 1, which indicates the 
limited hydration functions of NMFs and explains the 
dry skin phenotype associated with cutotype 2 (Fig. 5). 
In addition to dryness, skin associated with cutotype 
2 may be prone to other adverse conditions because 
taxa and KOs in cutotype 2 were also positively cor-
related with kynurenate, a key tryptophan derivative 
linked to pathological processes such as atopic der-
matitis, which causes dry, itchy, and inflamed skin [48, 
49]. Kynurenate could be derived from microbes to 
trigger host-microbe interactions as it is a ligand for 
the transcription factor aryl hydrocarbon receptor that 
regulates the functions of many skin cell types [50]. 
With increasing recognition of hydrocarbons in pol-
luted air as an important factor in the development of 
atopic dermatitis, particularly in childhood [51–53], 
our results suggest that shifts in skin microbiome com-
position after air pollution exposure could contribute 
to the aggravation of skin dryness and inflammation.

While this study improved our understanding of the 
skin microbiome in the context of PAH exposure, it 
has some limitations. First, although the growth rates 
of microbial taxa can be inferred computationally, 
whether the taxa are alive or dead cannot be discerned 
from genomic DNA data alone. Second, there is little 
information on whether detected metabolites were 
derived from microbes, the host, or the environment. 
Third, multivariate analysis only reveals correlations 
but not causations such that observed associations 
may be ecologically significant or arise from stochas-
tic processes [54]. Subsequently, the causal mecha-
nisms underlying detected associations (e.g., adverse 
skin conditions) requires future experimental verifica-
tion, such as by prospecting specific microbial–skin 
interplays using in  vitro skin models colonized with 
microbial species from each cutotype and exposing 
them to different types and concentrations of PAHs 
[55–57]. Furthermore, multi-omics analyses includ-
ing metatranscriptomics and metaproteomics together 
with metagenomics and metabolomics would provide 
finer understanding of the relationships between PAH 
exposure and microbial physiology, and the combina-
tion of culture-independent and culture-dependent 
assays would help to validate in silico associations [58].

Conclusions
This study revealed the associations between PAH expo-
sure and differentiation of skin microbiome into dis-
tinct cutotypes. Some of the differences in cutotypes 
may result in changes in microbial adaptation and skin–
microbe interactions that affect host skin health. The 
coupling of PAH exposure and cutotype differentiation 
will help future studies to compartmentalize skin micro-
biomes into clusters. In-depth characterization of these 
clusters can then be performed to identify taxonomic, 
functional, or metabolic biomarkers associated with 
changes in skin phenotypes (e.g., acne onset, pigmen-
tation frequency, and aging). Such a workflow will help 
develop strategies for preventing pollutant-associated 
skin effects by identifying specific features and inter-
actions from microbiome clusters linked to pollutant 
exposure.

Materials and methods
Subject characteristics
The analyzed cheek samples originated from a cohort of 
female participants aged 25–45 years from the Chinese 
cities of Baoding (more severe air pollution) and Dalian 
(less severe) as part of a multi-objective study examin-
ing PAH accumulation in hair [59] and the associations 
of PAH exposure with signs of facial aging [36], skin 
microbial taxonomic composition [22], and metabo-
lomes [11]. The participants resided in the respec-
tive cities for at least 15 years at the time of sampling. 
Details regarding cohort recruitment, inclusion and 
exclusion criteria, and sample collection procedures 
have been previously described [22]. For each sub-
ject, comprehensive skin physiological data collected 
through self-reporting and clinical assessment were also 
previously reported [22].

Sequencing and quality control
Genomic DNA was extracted from sampling swabs 
using the PowerSoil DNA isolation kit (MO BIO Lab-
oratories, Carlsbad, CA, USA) following the manu-
facturer’s instructions with minor modifications [22]. 
Library preparation and sequencing on an Ilumina 
NovaSeq platform to generate 150-bp paired-end reads 
were performed by SeqMatic LLC (Fremont, CA, USA) 
according to the manufacturer’s instructions. We pro-
cessed and sequenced 124 samples (Baoding n = 61, 
Dalian n = 63) and four negative controls (i.e., new ster-
ile swabs). The sequenced samples were selected across 
eight pollution exposure groups from weak to strong 
as previously described [11, 22] with 7 to 21 samples 
per group to obtain a balanced representation among 
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exposure levels. Two samples from Baoding did not 
yield sufficient reads and were removed from down-
stream analysis. Sequence adapters were removed 
from the raw reads using AdapterRemoval (v2.3.1) [60] 
and quality filtering and human DNA read removal 
was performed using Kneaddata (v0.7.4) as previously 
described [22]. Sequencing quality information for the 
samples is shown in Supplementary Table  6. Follow-
ing taxonomic classification of the reads using Kraken2 
(v2.0.7-beta; kmer length = 35, confidence score thresh-
old = 0) [61], then species-level abundance estimation 
using Bracken (v2.6.1; threshold for filter = 0) [62], puta-
tive contaminants were identified with the R package 
“decontam” based on the prevalence mode with 0.1 as 
the significance threshold [63]. This method deemed 
65 species to be contaminants (Supplementary Table 6) 
and reads that could be mapped to the representative 
genomes of the contaminant species (Supplementary 
Table  6) were removed using an in-house script. Fol-
lowing quality filtering and contaminant removal, an 
average of 9,138,597 paired-end reads were retained per 
sample.

Diversity and community composition analyses
Taxonomic classification of the filtered and contaminant-
free reads was performed using Kraken2 and Bracken 
as described above. The species-level taxonomy was 
used to identify host factors associated with commu-
nity diversity and compositional changes. Based on the 
taxonomic data, prediction strength analysis to estimate 
the optimal number of clusters in the community was 
performed based on the “partitioning around medoids” 
discrete clustering method [64] using the “prediction.
strength” command (with 100 random splits) in the R 
package “fpc” (v2.2–9). The highest mean prediction 
strength was 0.81 when k = 2, where k is the number of 
clusters. This result formed the basis for the presence of 
two cutotypes among all samples. FindFungi (v0.23) [65] 
was used to assign taxonomy to the members of the fun-
gal communities.

HUMAnN3 (v3.0.0.alpha.3) [66] was used to pro-
file the potential metabolic functions of the metage-
nomes, revealing 507,517 UniRef90 gene families that 
were grouped into 361 MetaCyc functional pathways 
and 5564 KOs. Based on this UniRef90 pathway data, 
contributional diversity (Gini–Simpson for within-
sample and Bray–Curtis for between-sample diversity) 
[28] was calculated for each cutotype and compared 
by selecting pathways detected in > 75% of sam-
ples within each cutotype. Antimicrobial resistance 
gene family markers were detected using ShortBRED 
(v0.9.3) [67]. The associations of the taxonomic, func-
tional, and antimicrobial resistance data with host and 

environmental factors, including PAH exposure, were 
determined using MaAsLin2 [68] with the general-
ized linear model, with city, acne onset, wrinkle grade, 
facial pigmentation frequency, and exposure to PAHs 
as fixed effects and BMI and age as random effects. An 
adjusted p value (i.e., q value) ≤ 0.05 was considered 
statistically significant in this analysis. The composi-
tion differences (ß-diversity) between samples were 
analyzed based on the Bray–Curtis dissimilarity using 
the function “vegdist” in the R package “vegan,” and the 
permutational multivariate analysis of variance (PER-
MANOVA) test was applied using the “adonis” func-
tion in the R package “vegan” with 999 permutations 
to test the influence of factors including cutotype, city, 
acne onset, age group, and facial pigmentation fre-
quency. The effects of PAHs on community differen-
tiation by cutotype were assessed with distance-based 
redundancy analysis using the “capscale” function in 
the R package “vegan.” The Procrustes test was per-
formed to determine congruency between taxonomic 
(Bracken) and functional (HUMAnN) composi-
tion data using the “protest” function in the R pack-
age “vegan.” To assess α-diversity, the samples were 
first subsampled using seqtk (v1.3) to a read depth of 
313,504 reads per sample, which corresponded to the 
sequencing depth of the sample with the lowest num-
ber of reads. This depth was representative of the total 
species-level taxon richness of the metagenomes (Sup-
plementary Fig.  3). Shannon diversity was calculated 
for the subsampled dataset in “vegan.” Statistical sig-
nificance of comparisons between two and more than 
two groups were performed using the Mann–Whitney 
and Kruskal–Wallis tests, respectively, in the R pack-
age “stats” (v3.6.1). False discovery rate (FDR) adjust-
ment of the statistical significance was performed 
using the Benjamini–Hochberg method.

Community‑ and strain‑level in situ growth rate estimation
Growth rate estimation of the community was performed 
using the Growth Rate Index (GRiD) algorithm [6] with 
a coverage cutoff (-c) of 0.2, and ambiguous reads were 
re-assigned using Pathoscope (v2.0) [69]. Growth rate 
estimation of subspecies was performed using the Strain-
Level Metagenomic Estimation of Growth Rate (SMEG) 
(v1.1.5) algorithm [7]. Reference genomes for each spe-
cies included in the SMEG analysis (Supplementary 
Table 7) were obtained from the RefSeq archive of NCBI 
(accessed 2 June 2020).

Representation of metabolites in cutotypes
The representation of metabolites in each cutotype was 
characterized using a v test [11] with the “catdes” func-
tion in the “FactoMinerR” package. For continuous 
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variables, we tested if the mean of a particular subgroup 
was different from the mean of the total population. For 
discrete or qualitative variables, we tested if the propor-
tion of a modality in a particular subgroup was over-
expressed or under-expressed compared with the total 
population.

Correlation analysis of the multivariate datasets
For each cutotype, taxonomic (Bracken) and functional 
(HUMAnN) features of the microbiome as well as the 
measured skin metabolites and PAHs were incorporated 
into a multivariate analysis to identify the correlating fea-
tures between the datasets. Residualized values of all fea-
tures from each type of data were determined based on 
a linear mixed-effects model using the R package “lme4.” 
The model included city, acne onset, and facial pigmenta-
tion frequency as fixed effects and age group as a random 
effect. The resulting residualized datasets were sub-
jected to pairwise hierarchical all-against-all association 
(HAllA) analysis (v0.8.18) as previously described [30]. 
Spearman’s rank correlations with a Benjamini–Hoch-
berg FDR-corrected p value (i.e., q value) ≤ 0.25 were 
considered statistically significant [30]. Spearman’s corre-
lations <|0.25| were considered weak and were removed 
from the output. A sub-network containing 500 corre-
lations of the lowest q value within each HAllA analysis 
between two datasets was constructed for each cutotype. 
The sub-networks for the two cutotypes were merged 
and visualized in Cytoscape (v3.8.2) to identify both cor-
relations shared between the cutotypes and cutotype-
specific correlations [70].

Measurement of PAHs in hair samples
The detailed methods for analyzing PAHs in hair sam-
ples to assess subjects’ pollutant exposure levels have 
been previously reported [59]. Briefly, hair samples were 
washed to remove any external deposits and then pulver-
ized, hydrolyzed, extracted, and analyzed using gas and 
liquid chromatography coupled with tandem mass spec-
trometry (MS/MS). We quantified 15 PAHs (all part of 
the US-EPA priority list), nicotine, and cotinine.

Measurement of skin metabolites
Detailed descriptions of the methods used for untar-
geted metabolomics analysis of skin samples have been 
previously described [11]. Briefly, the samples were 
extracted with methanol and then divided into four 
equal fractions. Two fractions were analyzed with sepa-
rate reverse-phase (RP) ultra-performance liquid chro-
matography (UPLC)-MS/MS with positive ion mode 
electrospray ionization (ESI) optimized for hydro-
philic and hydrophobic compounds, respectively. One 

fraction was analyzed with RP/UPLC-MS/MS with neg-
ative ion mode ESI, and one was analyzed with hydro-
philic interaction liquid chromatography/UPLC-MS/
MS with negative ion mode ESI. By comparing against 
a library of pure standards or using the analytical pro-
files (i.e., retention time, molecular weight, preferred 
adducts, and in-source fragments), 468 metabolites 
were identified. Those that could not be matched to 
known compounds were indicated with an X followed 
by a number.
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